[70240413 Statistical Machine Learning, Spring, 2015]

Sparse Learning

Jun Zhu

dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

May 26, 2015

Outline

Sparse learning

- Sparse learning on vectors
- Sparse learning on matrices
- Dictionary learning

Two Important Aspects

- Model goodness:
 - Often defined in terms of prediction accuracy
- Model parsimony:
 - Simpler models are preferred for the sake of scientific insight into the x – y relationship

Example – diabetes study

442 diabetes patients were measured on 10 baseline variables; a prediction model was desired for the response variable, a measure of disease progression one year after baseline

Patient	AGE x ₁	SEX x ₂	BMI x ₃	BP x ₄	Serum measurements						Response
					x5	x ₆	x 7	x ₈	X9	x ₁₀	У
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	:	:	:	:	:	:	:	:	:	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	85	220
442	36	1	19.6	71	250	133.2	97	3	4.6	92	57

• Two hopes:

- Accurate prediction
- Understand important factors

Supervised Learning and Regularization Tota

$$x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, 2, \dots, n$$

Minimize with respect to function $f : \mathcal{X} \to \mathcal{Y}$

$$\sum_{n} \ell(f(x_i), y_i) + \frac{\lambda}{2} ||f||^2$$

Error on data + Regularization

Two theoretical/algorithmic issues

Loss

• Function space/norm

Usual Losses

♦ **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = f(x)$

quadratic cost is
$$\ell(y, f) = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - f)^2$$

Classification:

 $y \in \{1, -1\}$, prediction $\hat{y} = \operatorname{sign}(f(x))$

Regularization

Main goal: Avoid over-fitting

Two main lines of work

- Euclidean and Hilbertian norms (i.e., ℓ_2 -norms)
 - Possibility of non linear predictors
 - Non parametric supervised learning and kernel methods
 - Well developed theory and algorithms (see, e.g., Wahba, 1990; Shawe-Taylor and Cristianini, 2004)
- Sparsity-inducing norms
 - Usually restricted to linear predictors on vectors $f(x) = w^{ op} x$
 - Main example: ℓ_1 -norm $\|w\|_1 = \sum_{i=1}^p |w_i|$
 - Perform model selection as well as regularization
 - Theory and algorithms "in the making"

Sparse Linear Estimation with ℓ_1 **-norm** • The general setting $f : \mathcal{X} \to \mathcal{Y}$

$$\sum_{n} \ell(f(x_i), y_i) + \Omega(f)$$

 \blacklozenge Sparse linear estimation with ℓ_1 -norm

$$f(x) = w^{\top} x$$

 $\Omega(f) = ||w||_1 = \sum_{i=1}^p |w_i|_i$

Why ℓ_1 -norm leads to sparsity? • Example 1: quadratic problem in 1D $\min_x \frac{1}{2}x^2 - xy + \lambda |x|$ • Piecewise quadratic function with a kink at zero

- Derivative at 0_+ : $g_+ = -y + \lambda$
- Derivative at 0₋ : $g_- = -y \lambda$
- x = 0 is the solution iff $g_+ \ge 0$, $g_- \le 0$ (i.e.: $|y| \le \lambda$)

• $x \ge 0$ is the solution iff $g_+ \le 0$ (i.e.: $y \ge \lambda$) $x^* = y - \lambda$

• $x \le 0$ is the solution iff $g_- \ge 0$ (i.e.: $y \le -\lambda$) $x^* = y + \lambda$ • Solution is: $x^* = \operatorname{sign}(y)(|y| - \lambda)_+$ Soft Thresholding

Why ℓ_1 -norm leads to sparsity? Example 1: quadratic problem in 1D $\min_{x} \frac{1}{2}x^2 - xy + \lambda |x|$ Piecewise quadratic function with a kink at zero Solution is: **Soft Thresholding** $x^* = \operatorname{sign}(y)(|y| - \lambda)_+$ $x^*(y)$

Geometric Interpretation

Penalizing is "equivalent" to constraining (HW: proof?)

Sparse Linear Estimation with ℓ_1 **-norm**

♦ Data: covariates $x_i \in \mathbb{R}^p$, response $y_i \in \mathcal{Y}, i = 1, 2, ..., n$ ♦ Minimize over loadings/weights $w \in \mathbb{R}^p$

$$J(w) = \sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \lambda \|w\|_1$$

Basis pursuit in signal processing (Chen et al., 1998)
Lasso in statistics/machine learning (Tibshirani, 1996)

LASSO

 a loop of rope that is designed to be thrown around a target and tighten when pulled. It is a well-known tool of the American cowboy.

Revisit the Diabetes Study

Lasso: least absolute shrinkage and selection operator

$$\min_{w} L(y, w^{\top}X) = \sum_{i} (y_{i} - w^{\top}x_{i})^{2}$$
s.t.: $||w||_{1} \le t$

$$\hat{w}$$

Robert Tibshirani

Dept. Stat., Stanford U.

500 0 -500 1000 2000 3000 0 t

Nonsmooth convex analysis & optimization

Analysis
 optimal conditions
 Optimization
 algorithms

Optimal conditions for smooth opt. – zero gradient

Example:
$$\min_{w} J(w) = \sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \frac{\lambda}{2} ||w||_2^2$$
gradient

$$\nabla J(w) = \sum_{i} \nabla_w \ell(y_i, w^{\top} x_i) x_i + \lambda w$$
If squared loss

$$\sum_{i} \ell(y_i, w^{\top} x_i) = \frac{1}{2} ||y - Xw||_2^2$$
gradient

$$\nabla J(w) = -X^{\top}(y - Xw) + \lambda w$$
solution

$$w = (\lambda I + X^{\top} X)^{-1} X^{\top} y$$
But ℓ_1 -norm is non-differentiable
Can't compute the gradient => subgradient (directional

derivatives)

Directional Derivatives

 \blacklozenge Directional derivative in direction Δ at w :

$$\nabla J(w,\Delta) = \lim_{\epsilon \to 0_+} \frac{J(w + \epsilon \Delta) - J(w)}{\epsilon}$$

Rate of change moving through w at the velocity specified by Δ
Always exist when *J* is convex and continuous

Main idea: in non-smooth settings, may need to look at all directions

• **Proposition**: *J* is differentiable at $w \text{ iff } \Delta \mapsto \nabla J(w, \Delta)$ is linear

 $\nabla J(w,\Delta) = \nabla J(w)^{\top} \Delta$

Optimal conditions for convex functions

Unconstrained minimization

Proposition: *w* is optimal *iff*

 $\forall \Delta \in \mathbb{R}^p : \nabla J(w, \Delta) \ge 0$

• i.e., function value goes up in all directions

Reduces to zero-gradient for smooth problems?

Directional derivative for ℓ_1 -norm

Function

$$J(w) = \sum_{i} \ell(y_i, w^{\top} x_i) + \lambda \|w\|_1 = L(y, Xw) + \lambda \|w\|_1$$

 $\$ ℓ_1 -norm:

$$||w + \epsilon \Delta ||_1 - ||w||_1 = \sum_{j, w_j \neq 0} (|w_j + \epsilon \Delta_j| - |w_j|) + \sum_{j, w_j = 0} |\epsilon \Delta_j|$$

Thus (separability of optimal conditions)

$$\nabla J(w, \Delta) = \nabla L(w)^{\top} \Delta + \lambda \sum_{j, w_j \neq 0} \operatorname{sign}(w_j) \Delta_j + \lambda \sum_{j, w_j = 0} |\Delta_j|$$
$$= \sum_{j, w_j \neq 0} (\nabla L(w)_j + \lambda \operatorname{sign}(w_j)) \Delta_j + \sum_{j, w_j = 0} (\nabla L(w)_j \Delta_j + \lambda |\Delta_j|)$$

Directional derivative for ℓ_1 -norm **General loss**: *w* is optimal *iff* for all j = 1, 2, ..., p

$$w_j \neq 0 \Rightarrow \nabla L(w)_j + \lambda \operatorname{sign}(w_j) = 0$$

 $w_j = 0 \Rightarrow |\nabla L(w)_j| \le \lambda$

♦ Squared loss: $L(y, Xw) = \frac{1}{2} \sum_{i} (y_i - w^{\top} x_i)^2$ $\nabla L(w)_j = -X_j^{\top} (y - Xw)$

• X_j is the *j*-th column of X

First-order methods for convex opt. – smooth optimization

Gradient descent:

 $w_{t+1} = w_t - \alpha_t \nabla J(w_t)$

with line search: search for a descent α_t
with fixed step size, e.g., α_t = a(t + b)⁻¹

- ♦ Convergence of f(w_t) to f^{*}(w) = min f(w)
 Depends on the condition number of the optimization number (i.e., correlation within variables)
- Coordinate descent:
 - Similar properties

Regularized problems – proximal methods

Gradient descent as a proximal method

 $w_{t+1} = \arg \max_{w} L(w_t) + (w - w_t)^{\top} \nabla L(w_t) + \frac{\mu}{2} ||w - w_t||_2^2$ $= w_t - \frac{1}{\mu} \nabla L(w_t)$

 $\text{Regularized problems of the form} \quad \min_{w} L(w) + \lambda \Omega(w) \\ w_{t+1} = \arg \max_{w} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \lambda \Omega(w) + \frac{\mu}{2} ||w - w_t||_2^2 \\ = \text{SoftThreshold}(w_t - \frac{1}{\mu} \nabla L(w_t))$

- Similar convergence rates as sooth optimization
 - □ Acceleration methods (Nestrov, 2007; Beck & Teboulle, 2009)

More on Proximal Mapping

The proximal mapping (or proximal operator) of a convex function *h* is

$$prox_h(x) = \arg\min_{\mu}(h(\mu) + \frac{1}{2}\|\mu - x\|_2^2)$$

Examples:

■ h(x) = 0: $\operatorname{prox}_h(x) = x$ ■ $h(x) = I_C(x)$ (indicator function of *C*): a projection on *C* $\operatorname{prox}_h(x) = P_C(x) = \arg\min_{\mu \in C} \|\mu - x\|_2^2$

• $h(x) = t ||x||_1$: a shrinkage (soft-threshold) operation

$$\operatorname{prox}_{h}(x)_{i} = \begin{cases} x_{i} - t & x_{i} \ge t \\ 0 & |x_{i}| \le t \\ x_{i} + t & x_{i} \le -t \end{cases}$$

More on Proximal Gradient Methods

Unconstrained problem with cost function split in two parts

$$\min_{x} f(x) = g(x) + h(x)$$

- □ *g* is convex, differentiable
- *h* closed, convex, possibly nondifferentiable; prox_{*h*} is inexpensive
- Proximal gradient algorithm:

$$x^{(k+1)} = \operatorname{prox}_{t_k h} \left(x^{(k)} - t_k \nabla g(x^{(k)}) \right)$$

• t_k is step size, constant or determined by line search

More on Proximal Gradient Methods

$$x^{(k+1)} = \operatorname{prox}_{t_k h} \left(x^{(k)} - t_k \nabla g(x^{(k)}) \right)$$

From definition of proximal operator

$$\begin{aligned} x^{(k+1)} &= \arg\min_{\mu} \left(h(\mu) + \frac{1}{2t_k} \|\mu - x^{(k)} + t_k \nabla g(x^{(k)})\|_2^2 \right) \\ &= \arg\min_{\mu} \left(h(\mu) + g(x^{(k)}) + \nabla g(x^{(k)})^\top (\mu - x^{(k)}) + \frac{1}{2t_k} \|\mu - x^{(k)}\|_2^2 \right) \end{aligned}$$

 \square i.e., minimizes $h(\mu)\,$ plus a simple quadratic local model of $\,g(\mu)\,$ around $\,x^{(k)}\,$

Examples

$$\min_{x} g(x) + h(x)$$

• Gradient method: h(x) = 0

$$x^{(k+1)} = x^{(k)} - t_k \nabla g(x^{(k)})$$

♦ Gradient projection method: $h(x) = I_C(x)$

$$x^{(k+1)} = P_C \left(x^{(k)} - t_k \nabla g(x^{(k)}) \right)$$

♦ Iterative soft-thresholding: $h(x) = t ||x||_1$

$$x^{(k+1)} = \operatorname{prox}_{t_k h} \left(x^{(k)} - t_k \nabla g(x^{(k)}) \right)$$
$$\operatorname{prox}_h(x)_i = \begin{cases} x_i - t & x_i \ge t \\ 0 & |x_i| \le t \\ x_i + t & x_i \le -t \end{cases} \xrightarrow{\ }$$

-t

η -Trick for ℓ_1 -norm

 \blacklozenge Variational form of the ℓ_1 -norm

$$\|w\|_1 = \min_{\eta \ge 0} \frac{1}{2} \sum_{i=1}^p \left(\frac{w_i^2}{\eta_i} + \eta_i\right)$$

Alternating minimization

- For η , closed-form solution $\eta_i = |w_i|$
- For *w*, weighted squared ℓ_2 -norm regularized problem

• **Caveat**: lack of continuity around $(w_i, \eta_i) = (0, 0)$

QP Formulation

For the special case with square loss

$$\min_{w} \frac{1}{2} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{1}$$

• is equivalent to ($w = w^+ - w^-$)

$$\min_{w^+,w^-} \frac{1}{2} \|y - X(w^+ - w^-)\|_2^2 + \lambda \sum_{j=1}^p (w_j^+ + w_j^-)$$

s.t.: $w^+ \ge 0, \ w^- \ge 0$

generic toolboxes apply, but normally very slow!

Piecewise linear solution paths

More on Piecewise Linearity

The general regularized loss minimization problem

$$\sum_{n} \ell(f(x_i; w), y_i) + \Omega(w)$$

♦ Piecewise linearity:
If ∃λ₀ = 0 < λ₁ < ··· < λ_m = ∞, and γ_k ∈ ℝ^d
s.t: w^{*}(λ) = w^{*}(λ_k) + (λ - λ_k)γ_k, for λ_k ≤ λ ≤ λ_{k+1}

Sufficient conditions for piecewise linearity *l* is quadratic or piecewise quadratic as a function of *w*Ω is piecewise linear in *w*

[Rosset and Zhu: Piecewise Linear Regularized Solution Paths, Annals of Stats., 2007]

Comparison on Algorithms for Lasso

n = 2000, p = 10,000

- SG: sub-gradient descent
- Ista: simple proximal methods
- Fista: accelerated version of Ista
- Re-L2: reweighted-least square

- CP: cone programming
- QP: quadratic programming
- ♦ Lars: least angle regression
- ♦ CD: coordinate descent

Alternative sparse methods – Greedy methods

- Forward selection
- Forward-backward selection

Non-convex method

- Harder to analyze
- Simpler to implement
- Problems of stability
- Positive theoretical results (Zhang, 2009, 2008a)
 Similar sufficient conditions as for the Lasso

Simulation results

- ♦ i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256],
 SNR = 1
- Note stability to non-sparsity and variability

Summary -- ℓ_1 -norm Regularization

Leads to non-smooth optimization
analysis through directional derivatives or subgradients
optimization may or may not take advantage of sparsity

Allows high-dimensional inference

- Interesting problems:
 - Stable variable selection
 - Weaker sufficient conditions (for weaker results)
 - Estimation of regularization parameter (all bounds depend on the unknown noise variance $\sigma 2$)

Extensions

 \clubsuit Sparse methods are not limited to the square loss

logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van De Geer, 2008; Bach, 2009)

Sparse methods are not limited to supervised learning

- Learning the structure of Gaussian graphical models (Meinshausen and Buhlmann, 2006; Banerjee et al., 2008)
- Sparsity on matrices
- Sparse methods are not limited to variable selection in a linear model

• Kernel learning (Bach et al., 2008)

Extensions

$\$ ℓ_p norm

Regularization with Groups of Variables

♦ Assume $\{1, 2, ..., p\}$ is partitioned into m groups $G_1, G_2, ..., G_m$ ♦ Regularization:

$$\Omega(w) = \sum_{i=1}^{m} \|w_{G_i}\|_2$$

Induces groupwise sparsity
Some groups entirely set to zero
No zeros within group

Regularization with Groups of Variables

$$\Omega(w) = \sum_{i=1}^m \|w_{G_i}\|_2$$

• E.g.: $||(w_1, w_2)||_2 + ||w_3||_2 \le 1$

Group Lasso Opt. problem: m $\min_{w} \sum_{i} (y_i - w^{\top} x_i)^2 + \lambda \sum_{i=1} \sqrt{p_i} \|w_{G_i}\|_2$ Optimal condition? **Proposition**: w is optimal iff $\forall j = 1, 2, ..., m$ $w_{G_j} \neq 0 \quad \Rightarrow -X_{G_j}^\top (y - Xw) + \frac{\lambda \sqrt{p_j} w_{G_j}}{\|w_{G_j}\|_2} = 0$ $w_{G_i} = 0 \quad \Rightarrow \|X_{G_i}^\top (y - Xw)\|_2 \le \lambda \sqrt{p_j}$ • p_j is the number of features in group *j*.

Coordinate descent algorithm can be used to solve it.

Sparse Group Lasso

• Opt. Problem:

$$\min_{w} \sum_{i} (y_i - w^{\top} x_i)^2 + \lambda \sum_{i=1}^{m} \|w_{G_i}\|_2 + \gamma \|w\|_1$$

• the single group case:

Sparsity for Matrices

Learning on Matrices – Collaborative Filtering

- \clubsuit Given N movies and M customers
- Predict the rating of customer *i* for movie *j*
- **Training data**: $N \times M$ incomplete matrix that describes the known ratings of some customers for some movies
- **Goal**: complete the matrix

Learning on Matrices – Multivariate Regression/Classification

Multivariate linear regression

Multiclass linear classification

$$\min_{\mathbf{W}} \sum_{d=1}^{n} \frac{1}{n} \ell(w_1^{\top} x_d, \dots, w_K^{\top} x_d, y_d)$$

• where $y_d \in \{0, 1\}^K$ and ℓ is the loss, e.g., logistic loss

Learning with Matrices – Multi-task Learning

- \clubsuit K prediction tasks on the same covariates $x \in \mathbb{R}^p$
 - Each model parameterized by $w_k \in \mathbb{R}^p$
 - Empirical risks:

$$L_{k}(w_{k}) = \frac{1}{n} \sum_{i=1}^{n} \ell_{k}(w_{k}^{\top} x_{i}^{k}, y_{i}^{k})$$

n

• All the parameters form a matrix

$$W = [w_1, \dots, w_K] = \begin{bmatrix} w_1^1 & \dots & w_K^1 \\ \vdots & w_k^j & \vdots \\ w_1^p & \dots & w_K^p \end{bmatrix} = \begin{bmatrix} w^1 \\ \vdots \\ w^p \end{bmatrix}$$

- Many applications:
 - Multi-category classification (one task per class)

Example – Image Denoising

Simultaneously denoise all patches of a given image
Example from Mairal et al. (2009)

Two types of sparsity of matrices

• Type 1 of sparsity:

Directly on the elements

Many rows or columns are zeros

Two types of sparsity of matrices

• Type 2 of sparsity:

- Through a factorization $M = UV^{\top} \ U \in \mathbb{R}^{n \times m}, \ V \in \mathbb{R}^{p \times m}$
- Low-rank sparsity: *m* is small

• Sparse decomposition: U sparse

Type 1: Joint Variable Selection in MTL

Parameters for all the K tasks

$$W = [w_1, \dots, w_K] = \begin{bmatrix} w_1^1 & \dots & w_K^1 \\ \vdots & w_k^j & \vdots \\ w_1^p & \dots & w_K^p \end{bmatrix} = \begin{bmatrix} w^1 \\ \vdots \\ w^p \end{bmatrix}$$

 w_3

 w_1

 w_2

Select all variables that are relevant to at least one task

$$\min_{W} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \ell_k(w_k^{\top} x_i^k, y_i^k) + \lambda \Omega(W)$$

• which regularizer?

$$\Omega(W) = \sum_{k=1}^{K} \|w_k\|_2$$

T 7

Type 2: Rank constraints and sparsity of the spectrum

 \bullet Given a matrix $M \in \mathbb{R}^{n \times p}$

Singular value decomposition (SVD): M = Udiag(λ)V[⊤] where U and V are orthogonal matrices; λ ∈ ℝ^m are eigenvalues
The rank of M is:

 $\operatorname{rank}(M) = \|\lambda\|_0$

• Rank of *M* is the minimum size *m* of all factorizations $M = UV^{\top}$ where $U \in \mathbb{R}^{n \times m}$, $V \in \mathbb{R}^{p \times m}$

Rank constrained learning

 $\min_{W \in \mathbb{R}^{n \times p}} L(W) \quad \text{ s.t.: } \operatorname{rank}(W) \le m$

Low-rank via Factorization

Reduced-rank multivariate regression

 $\min_{W \in \mathbb{R}^{n \times p}} \|Y - XW\|_F^2 \quad \text{s.t.:} \quad \operatorname{rank}(W) \le m$

- Well studied (Anderson, 1951; Izenman, 1975; Reinsel and Velu, 1998)
- □ Is solved directly using the SVD (by OLS + SVD + projection)

General formulation

$$\min_{U \in \mathbb{R}^{n \times m}, V \in \mathbb{R}^{p \times m}} L(UV^{\top})$$

- Still non-convex but convex w.r.t. U and V separately
- Optimization by alternating procedures

Trace-norm Relaxation

• With SVD $M = U \operatorname{diag}(\lambda) V^{\top} \operatorname{rank}(M) = \|\lambda\|_0$

- 0-norm can be relaxed by 1-norm $\|\lambda\|_1$
- This is the trace norm, denoted by $\|M\|_{\mathrm{tr}} = \|\lambda\|_1$

Trace-norm regularized learning

 $\min_{W \in \mathbb{R}^{n \times p}} L(W) + \lambda \|W\|_{\mathrm{tr}}$

- Convex problem
- Can be solved with: proximal methods; Iterative re-weighted Least-squares; etc

Trace-norm and Collaborative Filtering

CF as matrix completion (users as rows; items as columns)

Find a low-rank matrix to reconstruct noisy observations

$$\min_{X \in \mathbb{R}^{n \times p}} \sum_{(i,j) \in S} (X_{ij} - Y_{ij})^2 + \lambda \|X\|_{\mathrm{tr}}$$

- Semi-definite program (Fazel et al., 2001)
- Max-margin approaches to CF (Srebro et al., 2005)
- High-dimensional inference fro noisy matrix completion (Srebro et al., 2005; Candes & Plan, 2009)
- May recover entire matrix from slightly more entries than the minimum of the two dimensions

Graphical Lasso

aka: sparse inverse covariance estimation

- Gaussian graphical models
 - A set of random variables X_1, \cdots, X_N
 - The joint distribution is multivariate Gaussian

 $p(\mathbf{x}) = \mathcal{N}(\mu, \Sigma)$

- Proposition (sparse structure):
 - If the *ij*-th element of Σ^{-1} is zero, then X_i and X_j are conditionally independent, i.e., no direct edge

Gaussian Random Fields

	(1	6	0	0	0		(0.10	0.15	-0.13	-0.08	0.15
	6	2	7	0	0		0.15	-0.03	0.02	0.01	-0.03
$\Sigma^{-1} =$	0	7	3	8	0	$\Sigma =$	-0.13	0.02	0.10	0.07	-0.12
	0	0	8	4	9		-0.08	0.01	0.07	-0.04	0.07
	0	0	0	9	5		0.15	-0.03	-0.12	0.07	0.08

$$\Sigma_{15}^{-1} = 0 \Leftrightarrow X_1 \perp X_5 | X_{nbrs(1) \text{ or } nbrs(5)}$$

$$\Rightarrow$$

$$X_1 \perp X_5 \Leftrightarrow \Sigma_{15} = 0$$

- How to estimate this MRF?
- \clubsuit What if p >> n?
 - MLE doesn't exist in general!
 - What about only learning a "sparse" graphical model?
 - This is possible when s=o(n)
 - Very often it is the structure of the GM that is more interesting ...

Graphical Lasso

aka: sparse inverse covariance estimation

 $\min_{\Theta} -\log p(\mathbf{X}|\Theta) + \lambda \|\Theta\|_1$

- Various algorithms:
 - □ Banerjee et al. (2007): block coordinate descent
 - Friedman et al. (2008): graphical lasso
 - • •

Sparse Learning of General Graphs

Local methods

Sparse-norm regularized logistic regression + aggregation

□ See (Wainwright et al., 2006)

Global methods

- Sparse-norm regularized MLE
- See (Lee et al., 2006; Zhu et al., 2010; etc.)

Wainwright et al: High-Dimensional Graphical Model Selection Using l1-Regularized Logistic Regression Lee et al: Efficient structure learning of Markov networks using l1-regularization Zhu et al: Grafting-Light: Fast, Incremental Feature Selection and Structure Learning of MRFs

Graphical Regression

Graphical Regression

Graphical Regression

Consistency

Theorem: for the graphical regression algorithm, under certain verifiable conditions (omitted here for simplicity):

$$\mathbb{P}\left[\hat{G}(\lambda_n) \neq G\right] = \mathcal{O}\left(\exp\left(-Cn^{\epsilon}\right)\right) \to 0$$

Dictionary Learning

Learning with pre-defined basis functions -- generalized linear models

A mapping function

$$\phi: \ \mathcal{X} \to \mathbb{R}^N$$

Ooing linear regression in the mapped space

$$f(\mathbf{x}) = \phi(\mathbf{x})^\top \mathbf{w}$$

Fixed Basis Functions

• Given a set of basis functions $\{\phi_h(\mathbf{x})\}_{h=1}^H$

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}) \cdots \phi_H(\mathbf{x})]^\top$$

• E.g. 1:

$$\phi_h(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - c_h\|_2^2}{2r^2}\right)$$

• E.g. 2:

$$\phi_h(\mathbf{x}) = x_i^p x_j^q$$

$$f(\mathbf{x}) = \phi(\mathbf{x})^{ op} \mathbf{w}$$

Dictionary Learning

♦ Goal:

learn the basis functions from data

Parametric Basis Functions

Neural networks to learn a parameterized mapping function
E.g., a two-layer feedforward neural networks

$$f(\mathbf{x}; \mathbf{w}) = \sum_{h=1}^{n} w_h^{(2)} \phi_h(\mathbf{x}) + w_0^{(2)}$$

[Figure by Neal]

PCA: minimum error formulation

A set of complete **orthonormal basis**

$$\{\mu_i\}, \ i = 1, \dots, D$$

$$\mu_i^\top \mu_j = \delta_{ij}$$

• We consider a low-dimensional approximation

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni}\mu_i + \sum_{i=M+1}^D b_i\mu_i$$

The best approximation is to minimize the error

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2$$

Issues with PCA

Principal components calculated on 8x8 image patches

- PCA capture linear pairwise statistics
- Suitable for Gaussian distributed data
- Not localized
- Not resemble cortical receptive fields
- Not suitable for images with high order statistics

Sparse Coding

Basic assumption 1: a linear superposition model

$$I(x,y) = \sum_{i} \alpha_{i} \phi_{i}(x,y)$$
an image basis function

 Basic assumption 2: nature images have 'sparse structure' (similar as minimum-entropy code)

$$\alpha = \begin{pmatrix} 0.4 \\ 0 \\ 0 \\ 0.1 \\ 0.2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

[Olshausen & Field, Nature 1996]

Sparse Coding

Search for a sparse code is an optimization problem:

$$\min_{\alpha,\phi} \sum_{x,y} \left[I(x,y) - \sum_{i} \alpha_{i} \phi_{i}(x,y) \right]^{2} + \psi(\alpha)$$

• the L1-norm is a common choice

Solve the problems – alternating minimization
For each image, solve for α as a sparse learning problem
Update dictionary using gradient descent

Sparse Coding

Sasis learned on 16 x 16 natural scene image patches

- Localized
- Oriented
- Selective to spatial scales

[Olshausen & Field, Nature 1996]

Nonnegative Matrix Factorization

Matrix factorization

 $\min_{U \in \mathbb{R}^{n \times m}, V \in \mathbb{R}^{p \times m}} L(UV^{\top}; X)$

• Example losses:

$$L = \sum_{i=1}^{n} \sum_{j=1}^{p} ((UV^{\top})_{ij} - X_{ij})^2$$

$$L = \sum_{i=1}^{n} \sum_{j=1}^{P} (X_{ij} \log(UV^{\top})_{ij} - (UV^{\top})_{ij})$$

Non-negativity loss:

$$U \ge 0; \ V \ge 0$$

[Lee & Seung, Nature 1999]
Sparse basis and sparse coefficients for images:

[Lee & Seung, Nature 1999]

- Seguration Eigenfaces and non-sparse coefficients by PCA
 - Positive and negative combinations

=

[Lee & Seung, Nature 1999]

NMF for text documents with bag-of-word counts

 The same coefficient vector to reconstruct all word counts in a document

NMF for text documents with bag-of-word counts

court government council culture	president served governor secretary		Encyclopedia entry: 'Constitution of the United States'
constitutional rights justice	congress presidential elected		president (148) congress (124) power (120) united (104)
flowers leaves plant perennial flower	disease behaviour glands contact symptoms		constitution (81) amendment (71) government (57) law (49)
plants growing annual	skin pain infection		[Lee & Seung, Nature

1999

Topic Modeling – projection viewDictionary LearningTopica

Topical Projection

Probabilistic topic models:

Topical subspace is a simplex Projection under KL-divergence

the room was dirty and smelled awful. The wallpaper was dirty and nasty. The hallway smelled awful as did the water. The price was awful 100.00 to stay in such a dirty room. Just awful. I would not recommend this hotel to an enemy.

Fantastic Hotel in **beautiful** Krabi. We felt pampered by the **gentle** and **caring** staff. The turndown service each evening maintains the very **high** standard. A **blissful** sleep in the most **comfortable** beds. The food is of a extremely **high** quality with **fantastic fresh** and **vibrant** tastes.

doc2

Probabilistic Topic Models – restrictions

Ineffective in controlling posterior sparsity by using priors, e.g., Dirichlet prior in LDA (Zhu & Xing, UAI 2011):

- Restricted to MLE when considering supervised side information;
- Hard in inference due to a normalized likelihood model when considering discrete side information (e.g., category labels or features)

Sparse Topical Coding (STC) A Non-probabilistic Topic Model

Topical bases:

cal bases:

$$\beta_k \in \mathcal{P}_N$$
 $\beta = \begin{pmatrix} | & | & \cdots & | \\ \beta_{.1} & \beta_{.2} & \cdots & \beta_{.N} \\ | & | & \cdots & | \end{pmatrix}_{K \times N}$

Hierarchical coding:

• word code s – encode word counts under a loss:

 $\ell(w_n, \mathbf{s}_n, \beta) = \log p(w_n | \mathbf{s}_n, \beta)$

where $\mathbb{E}_{p(w_n|\mathbf{s}_n,\beta)}[T(w_n)] = \mathbf{s}_n^\top \beta_{.n}$ we use *Poisson* distribution

• **document code** θ – an aggregation of word codes

$$\sum_{n\in I} \|\mathbf{s}_n - \theta\|_2^2$$

Nonnegative hierarchical sparse coding (with dictionary learning)

 $\min_{\{\mathbf{s}_{dn}, \theta_d\}, \beta} \quad \sum_{d,n \in I_d} \ell(w_{dn}, \mathbf{s}_{dn}^\top \beta_{.n}) + \sum_{d,n \in I_d} (\frac{\gamma}{2} \|\mathbf{s}_{dn} - \theta_d\|_2^2 + \rho \|\mathbf{s}_{dn}\|_1) + \lambda \sum_d \|\theta_d\|_1$ s.t.: $\beta_k \in \mathcal{P}_N, \ \forall k; \ \theta_d \ge 0, \ \forall d; \ \mathbf{s}_{dn} \ge 0, \ \forall d, n \in I_d;$

Sparse Topical Coding (STC) A Projection View

(unnormalized) KL-divergence for log-Poisson loss

Projection is done under Regularization!

Experiments: Sparse Topical Coding

- 20 Newsgroups
- Documents from 20 categories
- $\sim 20,000$ documents in each group
- Remove stop word as listed in UMASS Mallet

[Zhu & Xing, UAI 2011; Zhang & Zhu, WWW2013]

Prediction Accuracy on 20Newsgroups

- gaussSTC: uses L2-norm regularizor on word and doc codes
- NMF: non-negative matrix factorization
- regLDA: LDA model using entropic regularizer on topic assignment distributions
- MedLDA: max-margin supervised LDA (Zhu et al., 2012)
- DiscLDA: discriminative LDA (Simon et al., 2008)

Sparsity of Word Codes on 20Newsgroups

Sparsity ratio: the percentage of zero elements on the word codes

Sparse Word Codes on 20Newsgroups

References

- Robert Tibshirani (1996), Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288.
- Stadley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani (2004), Least Angle Regression, Annals of Statistics, 32, 407-451.
- Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). A note on the group lasso and a sparse group lasso. Tech. Report.
- Francis Bach, Rodolphe Jenatton, Julien Mairal and Guillaume Obozinski. Optimization with Sparsity-Inducing Penalties. Foundations and Trends in Machine Learning, Vol. 4, No. 1 (2011)

Software:

 SPAMS (SPArse Modeling Software): <u>http://www.di.ens.fr/willow/SPAMS/</u>

Additional reading materials

Chap. 3 of Elements of Statistical Learning (2nd Edition)

<u>http://statweb.stanford.edu/~tibs/ElemStatLearn/</u>

Additional reading materials

Foundations and Trends[®] in Machine Learning Vol. 4, No. 1 (2011) 1–106 © 2012 F. Bach, R. Jenatton, J. Mairal and G. Obozinski DOI: 10.1561/2200000015

the essence of knowledge

Optimization with Sparsity-Inducing Penalties

By Francis Bach, Rodolphe Jenatton, Julien Mairal and Guillaume Obozinski

Additional reading materials

Foundations and Trends[®] in Optimization Vol. 1, No. 3 (2013) 123–231 © 2013 N. Parikh and S. Boyd DOI: xxx

Proximal Algorithms

Neal Parikh Department of Computer Science Stanford University npparikh@cs.stanford.edu

Stephen Boyd Department of Electrical Engineering Stanford University boyd@stanford.edu